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In this paper solutions of two axisymmetric contact problems are glven.
These involve an elastic half-space with a cylindrical hole and a half-space
made of two materlals separated by the surface r = a

1. The first problem we shall 1nvestigate is the torsion of an elastic
half-space with a circular cylindrical hole when twisting is accomplished by
rotation of a rigid circular die of radius 7 =) which 1s rigidly attached
to the half-space symmetrically with respect to the hole (Pig.l). On the
remaining parts of the surface of the hollow half-space, arbltrary (but abso-
lutely summable) tangential tractions act. As 1is well known, this problem
reduces to the determination of a displacement function &(r, z) which satis-

fies Michell's equation

16 2 320 3 00 , PO
— A Tt =0 A

in the region of an axlal section of the

body of revolution, and which also satis-
fies the boundary conditions

z v(r, 0)=f1(r) = xr 1<r<b)
7. (r 0) = fa(r) (b<r <o)
T (1 2)=f3(r) 0<z<=) (1.2)
Here x 1s the angle of rotation of the die. The shear stresses 1., T,
and the displacement v are determined in terms of the displacement function
o(r, z) by Formulas
oD v
TL=06r——, T,= Gr—- v= r®(r, z) (1.3)

Following Sneddon [1], we represent the solution in the form of the sum
of Fouriler-Bessel integrals

Fig. 1
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W (r, z) :5 P8 2o gy 5y az + 5 E.Eiz}., K, (£r) sin Ezdz (1.4
O g

where J,(x) 1s a Bessel function of the first kind, of a real argument,
K, (x) 1s a Bessel function of the second kind, of Imaglnary argument, and
t({g) and yx(g) are unknown functions.

We express the tangential displacement and shear stresses in terms of

these integrals
oo

Ep (8) /1 (8) % dE + | £ (8) K1 (&) sin Zadg

0

v(r,z)=

c!/?g

T, (r.z)=—G i (&) J1(EryesedE + G\ % () Ky (Er)cosEzdE  (1.5)
1]

0w08

<8

T (r2) = — G| 9 (&) /2 (8) et — G\ A () Ko (r) sin Eadg
0 0
By satisfying the boundary conditions (1.2} we obtain the following system
of integral equations for the determination of the unknown functions (g}
and x(2): o
Ve @nEndi=n  as<r<y
0

.

YE)W1(Er)dE =g (n) E<r <o) (1.6)

QW"S

S¢(§)Jg(§)e‘ﬁzd§+SX(§)K2(§)sin§zd§—{——é—fa(z)r:O O<z<oo) (1.7)

where )
g() =\ L E) K1 Er)ds—— f2(7) (1.8)

Dual integral equations of the type (1.6), where O = r < = have been
considered in many works [2 and 3]. If the region of variation of r 1is
1 <7r«<w, then a new equation of type (1.7) must be appended to Equations
1.6) for completeness., A simllar system of equatlons was investigated in
32 by Srivastav. However, the author considers only the case J, z) = 0,
J:{r) = 0, the last condition playing a key role in the solutlon of the
eguations. In the present problem, the case 7,{r) = 0 1is of no interest
because .we shall consider » # O .

Using the result of [2 and 3], we seek the solutlon of the dual integral

equations 1n the form
b [3e)

2@ = (Z) [\ )@y — v @ dy] (19
1 &

11

The function F;{y) is determined by Formuls

¥

b d ¢ wfi(u)du

Fy (!/) T 7{373 (y2__u2)‘/z
LS
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The function F,(y) satisfies the condition
lim yF.(y) =0 (1.10)
y—>oo

The expression (1.9) satisfles the first equation of (1.6). In order that

it satisfies the second equation of (1.6), the function F,(y) must have the
form

0

. d

Fa (y) + \ (“—’\-zo (1.11)
y Ty

as follows from [2 and 3].

Substituting the value of ¢(r) from (1.8) into (1.11), we obtain

o ]

’ f-g r)yd
sz(y)+nS IX(E)e“ydg“—S(;z—()*r)rlT:O (1.12)
Yy

We now express thé function y(g) in terms of y(z) by Equation (1.7)

FTEEK <§>+§S MM & g 4 - gf3<z)singzdz:o

Substituting the value of the function ¢(&) from (1.9) into the last
equation, we obtain

X @) + ot [\ yFa (y) eve dy —

. <

\uFs () v dy] +

e

2 0]
+m3 fo () sin £z dz = 0 (1.13)

where I,(x) is a Bessel function of the filrst kind, of imaginary argument.
To obtaln the value of the integral

¢ 3 d.

\ @ (a) T, (v2) g = — (7) @)™ y>a)
[]
has been used.

Eliminating the function x(g) from Equations (1.12) and (1.13), we obtain
a Fredholm integral equation of the second kind for the determination of the
function JS(y) = yF2(y)

f<y>+g K@+y)f@de=F() 6<y<o) (1.14)
In this expression, the following notation has been introduced:
K (z) = 28 et dg (z>2b>2) (1.13)
e @ ., o : (1.16)
_ Yy jg(r)dr 2 (¢ eS¥E ¢ .
Fy)=—¢ yS E—— S ) § fs(2) sin E2dz § rFy(n K (r + y)dr

where I, (x) and ¥X,(x) are Bessel functions of the first and second kinds,
of imaginary argument.
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It follows from Equations (1.14) to (1.16) that the condition (1.10) on
the function F,(y) 1s equlvalent to the condition

g‘o f:(r)dr _
(

lim y 2 — yz)‘/:

Yy

(1.17)

This conditlon will hold 1f J,(r) tends to zero like @ as r 4w,
with o > 1 + ¢ . However, from the condltion of absolute summabillity of
the external shearing tractions it rollows that f, (r) = O (r"2™%), with
€,> 0 . Therefore, the condition (1.17) is satisfied. The right-hand side
of the integral equation, F(y) , then goes to zero like y“TTx as y -~ o«
If f,(r) =0 for b < c < r then the function F(y) approaches zero expo-
nentially. The kernel of the integral equation, (1.15), 1s a continuous and
monotonically decreasing function for b > 1

We shall now show that the integral equation (1.14) can be solved by the
method of successive approximations. In order to do thils, the integrals

[o¢] [oe]

o0
u(b) =\ S K2 (z 4+ y)dedy = \ 2z K (z 4 2b) do
b b

)
—v(b)-_—_S Ig(t:rb)dt:S K ( + 2b) dz
b 0

must be computed.

We give some values of these integrals which were computed on the "Nairi"
digital computer

b=1.05 1.10 1.20 1.50  2.00
u(b) = 0.1368 0.0396 0.0029 0.00003  —
—o(b)=0.4421 0.2234 0.0982 0.0269 0.0050

As 1s apparent from the results, the inte-
gral equation (1.14%) can be successfully
solved by the method of successive approxima-
tions for b =2 1.05 . The larger the value
of b , the more rapid is the convergence of
this process.

The question of whether the integral equa-
tion (1.14) 1s solvable for 1 < b < 1.05
remains unsettled, For b = 1 , we have
u(l) = —v(1) = « . But in this case, as may be easily observed, the problem
which has been formulated can be solved exactly without using integral equa-
tions. This solution can be obtailned by elementary means if in the first
integral of Equation (1.4) the function ., (gr) is replaced by the function

Wi 1) =J, (Er) Y, (§a) — J5 (8a) Y, (BF)

where Y,(x) 1s a Bessel function of the second kind, of a real argument.

Plg. 2

2. We shall now consider the second problem of torsion of a half-space
consisting of two materilals when the surface separating the materlials 1s the
cylindrical surface r = a . The half-space is twilsted by rotating a rigid
circular die of radius b (2> a) which is rigidly attached to both materials
and 1s symmetrically located with respect to the inclusion (Fig.2).

The boundary conditions for this problem have the form
v(r, 0)=f1(r) ©O<r<b), (0 =Ff(r) o<r<e) (2.1)
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We seek a displacement function @(r, z) in the form

(@1(r, 5) (OSr<a, 0z o0)
1@:(r,2) (a<r < o0, 02 < o0) (2-2)
It follows from (2.1) and (2.2) that the functions & (r, z) (¢t =1, 2)

satisfy the differential equation (1.1), the boundary conditions

v (r, 0)=f1(7") (O r<a), va {7, 0) () @<r<y) (23)
TAr 0 =1(0) o<r<oo
and the conditions which match the solutions in the interior and exterior
parts of the half-space

(Dl (a, Z) = (Dz (a, Z), Gl

Here the stresses TE}), t{;) and the displacement v, are determined in

terms of the displacement function &(r, z) by Equations {(1.3), where ¢
and @ appear with the subscript ¢ , (¢t =1, 2)

(D(r, Z) =

) =622 (2.4)

rome or P13

We represent the functions ¢, and ¢, in the following form:

J
@y (r, 2) = BC(E)M&) sintzds 3] Apet ’}fi‘j‘”

= (2.5)

o0

0u(ro9) =\ D@ 2 i 1ot + | Bl at
0 o

where i, are the positive roots of Jy{u,a) =0 .

The value of 4, 1s obtained from the first condition of (2.3)

2 2
Ay = EETOE-MS rh(r) i (ur) dr = — e (2.6)

The last two conditions of (2.3) provide the dual integral equations for
the determination of the function RB(£)

\TBOLENE=1H() @<

r<<d)

0 (2.7
el

\BEAENE=2() <r<e)

6

the right-hand sides of which depend on the unknown function D0{g)
g(r) =\ DOK A — g1 () (2.8)
bt

The following system of equations is obtained from the conditions (2.%)

to find the unknown functions ¢{g) and 2{£):
[eo]

C(®) 11 (8a)— D () K (Ba) = === ﬁii’zﬁ(faﬁ" dot (2.9)

0
G:C (8) 1aGa) + Gub) () K (B0) = [ 28 G0, | 20010 g5
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From the system (2.9), we have (2‘10)
K I (Ba K; J1 (aa)— 1\ a)Ja (aa)
=2 o A 6 i s
. 2& na __O‘D G]EIQ (’aa)]2 ((X,d) + GzU.I] (a(l) J2 (aa) \L
D)= H{Gl?h(ga) § (o L £9) B(O()d:)tJ
where
A= GK, (8a) I, (8a) + G.K, (8a) I, (Ea) (2.11)
We now represent the solution of the dual equations (2.7) in the form
v, b 2
BE) = (Z)|\yers@) Gy dy —\ vFa ) 7, @) dy | (242)
2 b :
Y ¢}
; ,u_fﬂ,“ﬂ y N &M 0 NimyF,(y) = 0
Fi(y) = 54 5( s ) \ A0 =0 timyR)
Substituting the value of g(r) from (2.8) into (2.12), we obtain
yF2<y)+nS E1D (§) e dE — 3—1‘—"’—: 0 @)
v (r2—y%)

The condition of (2.13 in the function F,(y) now assumes the form

jee]
. rydr
hmyg andr - =0 (2.14)
yoo ¥ (rt—yh)"
However, since 1t follows from the condition of absolute summability of
the external shearing tractions that f, (r) = O (r'27%), the condition (2.1%)

1s satisfied. The condition of {2.12) is then also satisfied.
Let us express D(g) and ((g) in terms of the function Fy(y) . To do
this we substitute the value of pB{€) from (2.12) into (2.14)

2E(G1— G; G
D) = =g 1) (é“)[ (G 17«6112;2(1&13)@ -

b ©
— YRy + uFa ) ey
g (2.15)

b o)

26, [ Gixatls (Ea) K ' i

C® = [ e+ P @ e dy—{ yFa @) ey
a ¥

Eliminating the function D(g) from Equations (2.13) and (2.15), we obtain
the following FrefBholm integral equation of the second kind for the determina-

tion of the unknown function F,(y):
(s}

fO+\ @K@ +nds=F@)  0<y<w (2.16)
b

where
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4 ; O.O I )]-‘{i) ~iz
f @) = yF2(y), I\(z)::Z(GI_GZ)S _L@Z\i’_(w_“_e 2 gt
0
b 0 o ]
\ y ¢ _fa(dr__ on ¢ LEQE o
e éxpl(x)h(x+y)dx+'6‘%“§(rz—yzwz ‘“G’mos aEs

The possibility of application of the method of successive approximations
to the solution of the integral equation {2.16) can be demonstrated by a
method analogous to the one used in Section 1.

As a speclal case we obtailn for @¢,= 0 the solution of the problem con-
sidered in Section 1. In the case @;= G, , the kernel of the integral equa~
tion reduces to zero and we obtain the exact solution of the problem of tor-
sion of a homogeneous elastic half~space which was considered by Rostovtsev
[5]. In order to obtain the solution in the form of [5] 1t 1s also necessary
to set ¢ = 0 .

By setting G,= « we obtain the solution of the problem of torsion of an
elastic half-space with a rigid inclusion when twisting 1s accomplished by
rotation of a rigid die of radius b rigildly attached to the half-space and
symmetrically located with respect to the ineclusion., For this case, the
kernel of the integral equatlon assumes the form

oo gz i
K(Z)ZZS%—ﬁ (2> 2b > 2a) (2.47)
o

and the right-hand side takes the form
b

o0 ow -
= Y ¢ _fmdr 5 o €VdE
F(y) = §xF1 (@)K (z+y)dz + & § T 2xa§ e (219)
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