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In this paper solutions of two axlsymmetric contact problems are given. 
These Involve an elastic half-space with a cylindrical hole and a half-apace 
made of two materials separated by the surface F-U. 

1. The first problem we shall Investigate is the torsion of an elastic 

half-space with a circular cylindrical hole when twisting Is accomplished by 

rotation of a rigid circular die of radius r = b which Is rigidly attached 

to the half-space symmetrically with respect to the hole (Fig.1). On the 

remaining parts of the surface of the hollow half-apace, arbitrary (but abeo- 

lutely summable) tangential tractions act. As Is well known, this problem 

reduces to the determination of a displacement function @(r, z) which satle- 

fles Mlchell's equation 

In the region of an axial section of the 

body of revolution, and which also aatls- 

fles the boundary conditions 

u(r, 0) = fl(r) = XT (1 dr<W 

TGL(rt 0) = f2(r) (b<r<cc) 
Fig. 1 

z, (1, 4 = f3(79 (O<z <m) (1.2) 

Here x is the angle of rotation of the die. The shear stresses T,, 7, 

and the displacement v are determined in terms of the displacement function 

@(r, z) by Formulas 

~zGr= r ar ' 
z-&aQ) I i3Z 

u = r@((r, 2) (1.3) 

Following Sneddon Cl], we represent the solution in the form of the SUI 

of Fourier-Bessel integrals 
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where da(x) is a Bessel function of the first kind, of a real argument, 

K.(X) is a Bessel function of the second kind, of imaginary argument, and 

)(<) and ~(5) are unknown functions. 

We express thi? tangential displacement and shear stresses in terms of 

these integrals 

By satisfying the boundary conditions (1.2) we obtain the following system 

of integral equations for the determination of the unknown functions $15) 

and x(C): M 

s 
l E-9 (E) Ji (Er)d% -- fl (4 (I< r < W 
0 

a3 

s 
' ~~%~J~~~~~~% =:g@) G<r<=f (I.@ 
0 

33 

s l I$ (E) Ja (E) 6 d% -I- ‘x (9 & (E) sill %z G + + f3 (2) = 0 s (0 G z < 00) (1.7) 

Dual integral equations of the type (1.6), where 0 I: r c = have been 
considered in many works [2 and 33. If the region of variation of r Is 
lircm, 

f! 

then a new equation of type (1.7) must be appended to Equations 
1.6) for completeness. A similar system of equations was investi ated in 
4 

$1 i 
by Srivastav. However, the author considers only the case J@8 f z) - 0 , 
r) 10 # the last condition playing a key role in the solution of the 

equations. In the present problem, the case II(r) - 0 is of no interest 
because.we shall consider K # 0 . 

Using the result of 12 and 31, we beek the solution of the dual integral 

equations in the form 

Jz(Q= iZ,"[i y'@t (Y) Jv, (%~i) $Y - i ~‘li_Fa b) Jv, (%Y) dy] G.9) 
1 It 

The function P;ff)) is determined by Formula 

F,(y) - +$_j U2fl(U)du f (y” - u+ 
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The function F,(y) satisfies the condition 

lim yF?(y) = 0 (1.10) 
y-00 

The expression (1.9) satisfies the first equation of ('1.6). In order that 

it satisfies the second equation of (1.6), the function F,(y) must have the 

form 

(1.21) 

as follows from [2 and 31. 

Substituting the value of g(r) from (1.8) into (l.ll), we obtain 

We now express the function y(c) in terms of Q(S) by Equation (1.7) 

Substituting the value of the function $(<) from (1.9) Into the last 

equation, we obtain 

~~yP.(y)e-V”iy-~yFl(r)e-“dyl+ 
1” 

03 c) n 
+ n&(E) 3 fs (2) sin jz. dz = 0 

0 

(1.13) 

where I,(x) is a Bessel function of the first kind, of imaginary argument. 

To obtain the value of the integral 

00 

s ’ x"~Jz (4 JI,, (YX) ez = - (2) I2 (aE) e-4 (y > 0) 

0 
has been used. 

Eliminating the function x(s) from Equations (1.12) and (1.13), we obtain 

a Fredholm integral equation of the second kind for the determination of the 

function f(g) - yFz(y) 
m 

f(y)+S K(x+Y)~WX=F(Y) P<Y< =) 
h 

(1.14) 

In this expression, ihe following notation has been Introduced: 

Y Zz(4) _ K(s)==-2\ KmeErdE (2 > 26 > 2) (1.13) 
0 

(1.16) 

F(y) = -$-[t~~~~~,~+ $[~ff.(z)sin&zdz-[ rFl(r)K(r+y)dr 
0 0 1 

where la(x) and K,(x) are Bessel functions of the first and second kinds, 

of Imaginary argument. 
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It follows from Equations (1.14) to (1.16) that 

the function FF,(y) Is equivalent to the condition 

the condition (1.10) on 

(1.17) 

This condition will hold If f2(Y) tends to zero like rwa as 7 - m , 
with n > 1 + E . However, from the condition of absolute summabllity of 

the external shearing tractions It follows that f,(r) = O(T-~-~~), with 
Cl>O. Therefore, the condition (1.17) Is satisfied. The right-hand side 

of the Integral equation, F(V) , then goes to zero like y-2-Q as y - m . 
If fa(F) - 0 for b -c c -c F then the function F(y) approaches zero expo- 

nentially. The kernel of the Integral equation, (1.15), Is a continuous and 

monotonically decreasing function for b>l. 

We shall now show that the Integral equation (l..14) can be solved by the 
method of successive approximations. In order to do this, the Integrals 

corn 00 

u(b) = II ’ ’ KZ(x+y)dsdy= \ xKP(x+Zb) dx 

b b “u 

a3 M 

- v (b) zz ’ $ (t _t b) dt = K (x f 2b) dx 
s s 
b 0 

must be computed. 

We give some values of these Integrals which were computed on the %alrltt 
digital computer 

b = 1.05 1.10 1.20 1.50 2.00 

u(b)=0.1368 0.0396 0.0029 0.00003 - 

-v(b)= 0.4421 0.2234 0.0982 0.0269 0.0050 

As Is apparent from the results, the lnte- 
gral equation (1.14) can be successfully 
solved by the method of successive approxlma- 
tlons for b 2 1.05 . The larger the value 
of b , the more rapid Is the convergence of 
this process. 

Fig. 2 The question of whether the Integral equa- 
tion (1.14) Is solvable for 1 < b c 1.05 
remains unsettled. For b = 1 , we have 

u(1) = - U(1) - = . But In this case, as may be easily observed, the problem 
which has been formulated can be solved exactly without using Integral equa- 
tions. This solution can be obtained by elementary means If In the first 
Integral of Equation (1.41 the function J,(<F) Is replaced by the function 

W1 (5, r) = J, (Er) 1; (Ea) -J, W Y, (Ed 
where U.(x) Is a Bessel function of the second kind, of a real argument. 

2. We shall now consider the second problem of torsion of a half-space 

consisting of two materials when the surface separating the materials 1s the 

cylindrical surface r-a. The half-space Is twisted by rotating a rigid 

circular die of radius b (b> a) which Is rigidly attached to both materials 

and Is symmetrlcally located with respect to the Inclusion (Flg.2). 

The boundary conditions for this problem have the form 

u(r,O)=fl(r) (Odr<b), ~z(r, 0) = f*(r) (b<r<m) (2.1) 
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We seek a displacement function @(t, z) in the form 

(@l(r, 2) (O<rda, Odz<=) 

@(r, @= \&(',Z) (n<r<w, O$Z<M) 
(3.3) 

It follows from (2.1) and (2.2) that the functions @,(r, z) (t - 1, 2) 

satisfy the differential equation (l.l), the boundary conditions 

ul(GO)=fl(~) (O<r,<n), UZ(~, O)==f~(r) (u<:<<b) 

TL(*) (r, 0) = 12 (r) 
(2.3) 

P<r< ml 
and the conditions which match the solutions In the Interior and exterior 

parts of the half-space 

(2.4) 

Here the stresses r, Z, .p fit and the displacement v, are determined In 

terms of the displacement function @(r, z) by Equations (1.3), where G 

and CJ appear with the subscript t , (t - 1, 2) . 

We represent the functions @I and Q, In the following form: 

Jr (P$) 
sin &z dE + i AgewiLkZ --p-p-- 

0 k=l (2.5) 
m 

where ur are the positive roots of J,(u,o) = 0 . 

The value of Ar 1s obtained from the first condition of (2.3) 

(2.6) 

The last two condltlons of (2.3) provide the dual integral equations for 

the determination of the function B(f) 

w 

\ 
’ gTIB (E)JI (Er) dE = fl (r) (a < r < b) 

“0 (2.7) 
M 

!I 
’ ~(~)~l(~~)d~ = R(r) @<r<ml 

the right-hand sldes'of which depend on the unknown function d(g) 

The following system of equations is obtained from the conditions (2.4) 

to flnd the unknown functions G(s) and a(s): 

C (8 11 (b) - D (E) Kl (Ea) = F \ ‘p B (a)Jl (au) da 

a (a2 + 59) 
(2.9) 

G&(Qf,(&z)--t c,u(i)l(,(5a)=~[G*~~-G2I 
MU (a) Ja (au) 

&” + f’ 
dcr 1 0 
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From the system (2.9), we have 
(2.10) 

C(s)=~{Gl~““5:~~~,‘E”’ 
0 

where 
A = G,K, (Ea) 1, @a) + G,K, (Ea) 1, &) (2.11) 

We now represent the solution of the dual equations (2.7) in the form 

B(E)= j~~.',eyi~I;,~y)~l.,(Sy)dli-~~"~F,(y)J,,(Sii~d!,_l (2.12} 
li a b 

Substituting the value of u(r) from (2.8) into (2.1~2)~ we obtain 

The condition of (2.13) in the function F,(y) now assumes the form 

co 

lim y 
s 

52 (r) dr 

ll-+c=J v( =O r2 - y2)‘/2 (2.14) 

However, since it follows from the condition of absolute summabllity of 

the external shearing tractions that fz (r) = O(P-~-~), the condition (2.14) 
Is satisfied. The condition of (2.12) is then also satisfied. 

Let us express D(5) and C(c) In terms of the function Fa(v) . To do 

this we substitute the value of B(c) from (2.12) Into (2.14) 

c (El = 2 [ C1xa212 (4a) KI (Sa) 

Wl (4a) 
+ 5 yF1 (y) e-Q dy- i yF, (y) e-Wy] 

a b 

Ellmlnatlng the function D(s) from Equations (2.13) and (2.15), we obtain 

the following Freaholm Integral equation of the second kind for the determlna- 

tlon of the unknown function F,(g): 

!(y)+~f(r)K(z_ty)dz=F(g) (b,<Y< 00) (2.1ti) 
b 

where 
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The possibility of application of the method of successive approximations 

to the solution of the integral equation (2.16) can be demonstrated by a 

method analogous to the one used in Section 1. 

As a special case we obtain for Gt= 0 the solution of the problem con- 

sidered in Section 1. In the case G1= G, , the kernel of the integral equa- 

tion reduces to zero and we obtain the exact solution of the problem of tor- 

sion of a homogeneous elastic half-space which was considered by Rostovtsev 

c51. Jn order to obtain the solution in the form of [5] It is also necessary 

to set a = 0 . 

By setting o,= = we obtain the solution of the problem of torsion of an 

elastic half-space with a rigid Inclusion when twisting is accomplfshed by 

rotation of a rigid die of radius b rigidly attached to the half-space and 

symmetrically located with respect to the Inclusion. For this case, the 

kernel of the Integral equation assumes the form 

(2.1’7) 

and the right-hand side takes the form 

P(y) = &I (x)K(z + ?J)ds+ g fztrJdr 
co 

at (r2 - y2P 
- 2xa I ” $y) (2.18) 

a U 
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